Reduction of behavior of additive cellular automata on groups

نویسنده

  • Valeriy K. Bulitko
چکیده

A class of additive cellular automata (ACA) on a finite group is defined by an index-group g and a finite field Fp for a prime modulus p [1]. This paper deals mainly with ACA on infinite commutative groups and direct products of them with some non commutative p-groups. It appears that for all abelian groups, the rules and initial states with finite supports define behaviors which being restricted to some infinite regular series of time moments become significantly simplified. In particular, for free abelian groups with n generators states V [t] of ACA with a ruleR at time moments t = p, k > k0, can be viewed as ||R|| copies of initial state V [0] moving through an n-dimensional Euclidean space. That is the behavior is similar to gliders from J.Conway’s automaton Life. For some other special infinite series of time moments the automata states approximate self-similar structures and the approximation becomes better with time. An infinite class DHC(S, θ) of non-commutative p-groups is described which in particular includes quaternion and dihedral p-groups. It is shown that the simplification of behaviors takes place as well for direct products of non-commutative groups from the class DHC(S, θ) with commutative groups. Finally, an automaton on a non-commutative group is constructed such that its behavior at time moments 2, k ≥ 2, is similar to a glider gun. It is concluded that ACA on non-commutative groups demonstrate more diverse variety of behaviors comparing to ACA on commutative groups. Subj-class: nlin. CG MSC-class: 37B15, 68Q80

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

Isomorphisms of Additive Cellular Automata on Finite Groups

We study sources of isomorphisms of additive cellular automata on finite groups (called index-group). It is shown that many isomorphisms (called regular) of automata are reducible to the isomorphisms of underlying algebraic structures (such as the index-group, monoid of automata rules, and its subgroup of reversible elements). However for some groups there exist not regular automata isomorphism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1004.4361  شماره 

صفحات  -

تاریخ انتشار 2010